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ABSTRACT Until recently, Ebola virus (EBOV) was a rarely encountered human pathogen that caused disease among small pop-
ulations with extraordinarily high lethality. At the end of 2013, EBOV initiated an unprecedented disease outbreak in West Af-
rica that is still ongoing and has already caused thousands of deaths. Recent studies revealed the genomic changes this particular
EBOV variant undergoes over time during human-to-human transmission. Here we highlight the genomic changes that might
negatively impact the efficacy of currently available EBOV sequence-based candidate therapeutics, such as small interfering
RNAs (siRNAs), phosphorodiamidate morpholino oligomers (PMOs), and antibodies. Ten of the observed mutations modify the
sequence of the binding sites of monoclonal antibody (MAb) 13F6, MAb 1H3, MAb 6D8, MAb 13C6, and siRNA EK-1, VP24, and
VP35 targets and might influence the binding efficacy of the sequence-based therapeutics, suggesting that their efficacy should
be reevaluated against the currently circulating strain.
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As the Ebola virus disease (EVD) outbreak in West Africa of
2013 continues (1), public health and emerging infectious

disease officers have declared a state of emergency (2). As of
8 January 2015, the mean lethality in this outbreak, caused by
Ebola virus (EBOV), reached 39.4% (http://www.who.int/csr/don
/archive/disease/ebola/en/). Another study, utilizing different
methods, calculated the real case fatality rate at 70% (3). The
uncontrolled situation in the outbreak area, now spread over six
West African countries, and the risk of further EBOV exportation
beyond the African continent prompted the World Health
Organization to adopt emergency containment measures.
Among them is the testing of as-yet-unapproved medical
countermeasures in the affected human population (4–7).

At the moment, there are three treatment modalities directly
based on the EBOV genomic sequence that have been explored for
postexposure treatment of EVD with encouraging results in
nonhuman-primate models: small interfering RNAs (siRNAs) (8)
and phosphorodiamidate morpholino oligomers (PMOs) (9) tar-
geting EBOV genome L, VP24, and/or VP35 gene transcripts and
passive immunotherapy based on antibodies or antibody cocktails
targeting EBOV epitopes (10–14). Briefly, they inhibit viral repli-
cation by either targeting viral transcripts for degradation
(siRNA), by blocking translation (PMO), or by acutely neutraliz-
ing the virus to allow the host to mount an effective immune
response against the pathogen (passive immunotherapy). The
binding sites for antisense therapeutics based on siRNAs and

PMOs are described in references 8 and 15, respectively. All of
them were designed specifically against sequences derived from
the EBOV variant causing an EVD outbreak around Yambuku,
Zaire (present-day Democratic Republic of the Congo), in 1976
(Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga; short
name, EBOV/Yam-May; RefSeq no. nc_002549 [16]). All mono-
clonal antibodies used for passive immunotherapy were generated
against the glycoprotein of the EBOV variant causing an EVD
outbreak in Kikwit, Zaire, in 1995 (Ebola virus/H.sapiens-tc/
COD/1995/Kikwit-9510621; short name, EBOV/Kik-9510621;
GenBank no. ay354458 [17]). Traditional peptide-based epitope
mapping allowed the differentiation of conformational and linear
epitopes. Coimmunoprecipitation assays were performed against
broad domains of the glycoprotein to identify binding targets of
conformational antibodies (18, 19). Table 1 summarizes publicly
available information (8–12, 15, 18, 19) for the three treatment
types, including therapeutic targeting and efficacy in postinocula-
tion treatment of experimental EBOV infection in animals. All
postexposure studies evaluating these therapeutics were com-
pleted using EBOV/Kik-9510621 as the challenge virus.

For this study, we reviewed all publicly available genomic in-
formation for the Ebola virus Makona variant (EBOV/Mak) caus-
ing the 2013–2014 West African outbreak (102 genomic se-
quences) (1, 20, 21) and assessed the potential of the observed
EBOV/Mak genetic drift relative to EBOV/Yam-May and EBOV/
Kik-9510621 to affect each therapeutic. When EBOV/Mak was
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compared against EBOV/Kik-9510621, a total of 640 (3.38% of
the genome) single-nucleotide polymorphisms (SNPs) were iden-
tified (327 synonymous, 76 nonsynonymous, and 237 noncod-
ing), whereas when it was compared against EBOV/Yam-May, a
total of 603 (3.18% of the genome) SNPs were identified (297
synonymous, 80 nonsynonymous and 226 noncoding). Four mu-
tations are located in the published binding region of the siRNA-
or PMO-based therapeutics, and 21 induce nonsynonymous
changes to epitopes recognized by monoclonal antibodies in pas-
sive immunotherapy cocktails. Figure 1 combines an SNP table
with a heat map that outlines the potential of each SNP to affect
the efficacy of available therapeutics. The column designated

“%EBOV-WA” stratifies changes by the number of West African
sequences that support each mutation. Changes that are present in
all sequences obtained from West Africa are considered “interout-
break”; changes that are observed in only some sequences from
the West African outbreak are considered “intraoutbreak” (i.e.,
EBOV-WA represents �100% of the population at the specified
position). Of the 28 sites observed within binding regions, 3 SNPs
(21.4%) evolved during the 2013–2014 EVD outbreak (intraout-
break), whereas 22 SNPs (78.6%) evolved prior to the outbreak
(interoutbreak). None of the specific SNPs presented here have
been previously associated with EBOV resistance to any therapeu-
tic; however, there is a general lack of information surrounding

TABLE 1 Summary of binding and postexposure efficacy data available for EBOV therapeuticsa

Candidate
therapeutic
component Treatment modality Therapeutic(s)

Nucleotide
position based on
GenBank/RefSeq
entryb

Amino acid
residues of
target protein

Target
gene

Treatment
time p.i.

Treatment
success
(% survival
range) Reference(s)

EK-1-mod siRNA Tekmira 17,396–17,418 NA L 30 min to 6 days 66.7–100c 8
VP24-1160-mod siRNA Tekmira 11,043–11,065 NA VP24 30 min to 6 days 66.7–100c 8
VP35-855-mod siRNA Tekmira 3884–3906 NA VP35 30 min to 6 days 66.7–100c 8
1H3 Mab Passive immunization ZMAB 6039–6508 1–157 GP 3–9 days 50–100d 10, 18
2G4 Mab Passive immunization ZMAPP, ZMAB 7540–8039 501–676 GP 3–9 days 50–100d,e 10, 12, 18
4G7 Mab Passive immunization ZMAPP, ZMAB 7414–7542 459–501 GP 3–9 days, 5 days 50–100d,e 10, 12, 18
13C6 Mab Passive immunization MB-003, ZMAPP 6039–7542 1–501 GPf 1–2 days, 5 days 66.7–100e 11, 12, 18, 19
6D8 Mab Passive immunization MB-003 7204–7254 389–405 GP 1–2 days 66.7 11, 19
13F6 Mab Passive immunization MB-003 7240–7290 401–417 GP 1–2 days 66.7 11, 19
AVI-7537 PMO AVI-6002 10,331–10,349 NA VP24 30–60 min 60 9, 15
AVI-7539 PMO AVI-6002 3133–3152 NA VP35 30–60 min 60 9, 15
a MAb, monoclonal antibody; NA, not applicable; p.i., postinoculation; PMO, phosphorodiamidate morpholino oligomers; siRNA, small interfering RNA. Recognition sequences
for PMO and siRNA are listed in the supplemental methods.
b siRNA positions include both sense and antisense oligonucleotide positions. Mutations specific to each are designated in Fig. 1.
c Survival range is dependent on dosing.
d Survival range is dependent on addition of Ad-IFN (interferon co-treatment) to treatment 1 day p.i.
e Survival range is dependent on formulation.
f Cross-reacts with TAFV (Tai Forest virus) and SUDV (Sudan virus) GP.

FIG 1 Mutation analysis of candidate therapeutic binding sites. An SNP table is combined with a heat map based on three categories: (i) mutation shown to be
tolerated by the therapeutic (10), (ii) mutations that are within the binding region of the therapeutic but have not been tested (8 –12, 15, 18, 19), and (iii) tolerated
diversity between development strains. %EBOV-WA, percentage of genomes containing a change in the West African (WA) sequences of 2014 from EBOV/
Kik-9510621.
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the appearance of viral resistance to EBOV therapeutics compared
to viral systems like influenza virus and HIV due to the limitations
of gain-of-function experiments. Eighteen of the changes have
been demonstrated to be tolerated by the ZMAPP cocktail (13C6,
4G7, and 2G4), which demonstrated an increased binding affinity
to the EBOV/Mak glycoprotein sequence (12), thus minimizing
the potential impact of the mutations. Nevertheless, some of the
intraoutbreak changes observed in this region still need to be eval-
uated. The changes observed in the West African sequences that
are already represented in EBOV/Yam-May are also listed as tol-
erated (yellow), as the therapeutics discussed here have had testing
completed with both viruses or mouse/guinea pig-adapted ver-
sion of the virus and are not different between EBOV/Yam-May
and EBOV/Mak (19, 22–24). The other ten mutations, affecting
the binding sites of MAb 13F6, MAb 6D8 (part of MB-003), MAb
13C6 (part of MB-003 and ZMAPP), MAb 1H3 (part of ZMAB),
and siRNA EK-1, VP24, and VP35 targets, might influence the
binding efficacy of the sequence-based therapeutics; their efficacy
should be tested against the currently circulating strain (Fig. 2).

Closing this gap might be critical to ongoing efforts to control
the outbreak. A robust genomics screening, pre- and post-
treatment, would allow clinicians to make informed choices in
treatment regimen as well as clarify what signs of viral resistant
development should be tracked.

Our risk assessment is not without caveats. (i) This analysis is
limited to the binding regions of candidate therapeutics, yet dele-
terious changes may not be limited to these regions. (ii) Changes
in the binding regions may be well tolerated and not influence
therapeutic efficacy. (iii) As EBOV/Mak genomes from humans
treated with these therapeutics have not yet been determined, con-
clusions about intrahost selection pressure cannot be made at this
stage. It is also important to note that some of the therapeutics
have been deliberately designed to be tolerant to possible target
mutation: for instance, siRNAs and PMOs were targeted to areas
of higher conservation where mutation was thought to be unlikely
(based mainly on conservation on all available EBOV sequences at
the time of design), and monoclonal antibody cocktails were de-
signed to include several antibodies that bind to distinct regions of
the EBOV glycoprotein (18, 19). This multitarget development
may ensure that multiple genetic bottlenecks are present to min-
imize the impact of individual mutations of an evolving EBOV
variant.

In summary, the information presented here offers a concise
evaluation of the potential impact of the evolutionary drift of
Ebola virus Makona in the development of sequence-based ther-

apeutics based on sequence information available in September
2014. Given the ongoing continued person-to-person transmis-
sion, it is imperative that more current isolates be sequenced and
evaluated in a similar manner.
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